## Homeschooling Laws in Every State

HeyTutor compiled a list of homeschooling laws in each of the 50 states and Washington D.C., drawing from state education laws and national organizations that research, monitor, support homeschooling

by Scott Laughlin

HeyTutor Blog Editor

A percentage error provides an easy-to-understand measure of error margins. It lets you know how big an error is. For instance, a 3-percent error value means that your measured figure is very close to the actual value. On the other hand, a 50-percent margin means your measurement is a long way from the real value. If you end up with a 50-percent error, you probably need to change your measuring instrument.

There are many reasons for calculating percentage errors. Engineers use it to determine the precision of a measuring instrument. Within the finance sector, statisticians and data analysts rely on it to verify if a data set is progressing in the right direction. Outside the workspace, we use percentage errors for lots of everyday tasks. For instance, if you’re baking a cake and the recipe calls for four and a half teaspoons of sugar, you could simply round it off. You could indulge your sweet tooth by adding five teaspoons or opt for four spoons. Either option would be about a 10% error margin—and still lead to tasty results.

Note: If the measured value is the same as the actual value, then the percentage error is zero.

Calculating the percentage error is a lot less complicated than calculating standard deviation. You only need to complete several quick steps.

Subtract the actual value from the estimated value

Divide the results from step 1 with the real value

Multiply the results by 100 to find the total percentage

All of this is summed up with the formula:

Percentage Error = ((Estimated Number – Actual Number)/ Actual number) x 100

While measuring the layout for a pool, a landscaper accidentally records 8m. What is the percentage error if the actual length is 10m?

To solve for this, we’ll use the formula:

Percentage Error = ((Estimated Number – Actual Number)/ Actual number) x 100

Where the Actual Value = 10m

And the estimated value = 8m.

8m – 10m = -2m

-2m/10m = -0.2

-0.2 x 100 = -20%

The percentage error in the measurement was -20%

Percentage Error = 8 – 10/10 x 100 = -2/10 x 100 = -20%.

The absolute error is simply the absolute value (written as |x|) between the experimental measure and the actual measure (the difference between the two, ignoring any negative sign). It provides a magnitude of the difference between both figures.** In comparison, the relative error refers to the ratio between the absolute error and the actual value. You can calculate it by dividing the absolute error and the actual value. For instance, if the absolute error is 2 and the actual value is 6, the relative error is 2/6, which is 0.3333... When the relative error is turned into a percentage, it becomes a percentage error.

In summary:

Absolute Error = |Experimental Measurement – Actual Measurement|

Relative Error= Absolute Error/Actual Measurement

Percentage Error = Decimal Form of Relative Error x 100.

**For instance, the absolute error between 4 and 6 is 2, not -2. Written as a formula: |4 - 6| = 2. Another example: |7-4| = 3.

Education:
How the internet is redefining learning in the 21st century
by Heytutor Blog

Education:
In Person Tutoring vs Group Tutoring
by Heytutor Blog

Education:
How To Get Into The Best Colleges
by Heytutor Blog

Education:
Does Going to College Matter?
by Heytutor Blog

HeyTutor compiled a list of homeschooling laws in each of the 50 states and Washington D.C., drawing from state education laws and national organizations that research, monitor, support homeschooling

The issue of mixing up or misusing the words “their,” “they’re,” and “there” is a common one shared by even the best readers and writers.

Parentheses serve multiple purposes in English, and they are implemented in pairs.